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Real-time video streaming is prevalent
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"...over the past year, there has been a

100-fold increase of video minutes
received via the WebRTC stack..."

7 n this time of pandemic, the world has turned to
&l Internet-based, RTC (realtime communication) as
never before. The number of RTC products has, over
i the past decade, exploded in large part because
W of cheaper high-speed network access and more
powerful devices, but also because of an open, royalty-free
platform called WebRTC.
In fact, over the past year, there has been a 100-fold
increase of video minutes received via the WebRTC
stack in the anonymous population that has opted into

Google Chrome's statistics. WebRTC can be found in most
Internet meeting services, social networks, live-streaming



Goal: stream video w/ constantly low delay and high bitrate

(No time to wait for retransmission)

Challenge: packet losses are hard to avoid

~1.5% frames lose* 20%-80% of their packets burstly within a frame.[1-2]

*Frame-level packet loss includes both packets dropped in network and packets not received by the decoding deadline

Common intuition: lowering packet loss = better user-perceived quality




s one video obviously better than another video?

Video A: Video B:

A is much better No significant difference B is much better




Survey: which video is better?

A: 50% loss between 2-2.15 sec B: 15% loss between 2-2.15 sec

A is obviously better No significant difference B is obviously better




How receiver deals with packet losses

Error concealment: “guesses” the missing piece based on arrived data at receiver side

Video content packets

X ]

.
Sender Receiver

| will use most efficient compression

. | will guess the content in the lost packets
without any redundancy

Issue: Guessing missing data is fundamentally difficult without redundant information
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How sender deals with packet losses

Forward error correction (FEC): protect at sender-side

4 Video content packets 1 Parity packet — Tolerate at most 1 packets lost

-
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Q.0 X X D x

Sender Receiver
—/\ N
I’ll sacrifice bitrate and send extra parity
packets to protect against packet losses

Too many packets lost, | cannot decode

Issue: FEC is effective only if packet loss is lower than its redundancy rate




Summary of existing solutions
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What's missing?

The video sender and receiver are often jointly optimized
for compression efficiency.

However, the video sender and receiver are rarely
jointly optimized for loss resilience.
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Our insight: jointly optimizing the encoder and decoder under different
packet losses considerably improves loss resilience

Specifically, GRACE achieved better loss resilience by jointly training neural encoder
and decoder under a range of simulated packet losses



Our insight: jointly optimizing the encoder and decoder under different
packet losses considerably improves loss resilience

Q1: How to train
neural video codec?

w—

Specifically, GRACE achieved better loss resilience by jointly training neural encoder
and decoder under a range of simulated packet losses

Q3: How to choose the Q2: How to simulate
packet loss rates in training packet loss in training?
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Video codecs and neural video codecs

The encoder takes in video and producing the code

Decoder reconstructs the video based on the code

4 ) 4 )

Motion prediction

x: Video , ) Reconstruct X: Decoded
Residual calculation )
source Inverse transform video
_ DCT transform —— S —

Quantization Dequantization

k / Code k /

For simplicity, the entropy encoding step is omitted, since it does not change the code 13



Video codecs and neural video codecs

Replacing modules in traditional codecs with neural networks

Encoder and decoder can be seen as trainable functions f, and g,

Specifically, GRACE employs the NN architecture from DVC (CVPR’19)

x: Video

source
—

\

Neural encoder

f¢(x) -y

/

y: the coded
tensor

/

Neural decoder

go(y) 2 X

\

X: Decoded

video
e
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How to train a neural video codec

Minimize Error(x,X) + a - Size(y)

Pixel-level deviation (MSE)

x: Video

source
, Neural encoder

fqb(x) -y

Training objective

/

y: the coded
tensor

Encoded data size

Neural decoder

go(y) 2 X

\

where 7 = fo(%)
X =9e(y)
X: Decoded
video

—
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How to train a neural video codec with packet loss

Training objective

Minimize Error(x,X) + a - Size(y) where X = J(0)
X =9g(y)
Pixel-level deviation (MSE) Encoded data size

x: Video X: Decoded
source video
o, Neural encoder NN Neural decoder S

X =9o(2)

fcp(x) -y
y: the coded

/ tensor
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How to train a neural video codec with packet loss

Training objective y = f(x)
Minimize Error(x,X) + a -Size(y) wherez =P, ..(y)
X =9¢(z)

Pixel-level deviation (MSE) Encoded data size

Packet loss function

x: Video _ X: Decoded
source Z = PlOSS(y) video
— Neuralencoder | — Neural decoder | ———»
foo) =Y go(z) - X
y: the coded Z: coded tensor

/ tensor after loss
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Packet loss during training and inferencing

During training: apply P} Random zeroing
78] Z = Pioss(¥) \l
///Zodedtensory
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Encoderl ------------------c- e e e

Coded tensor y
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45

During inferencing: packet loss should have the same effect as during training
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Packet loss during training and inferencing

During training: apply P} Random zeroing
45

z=P x
708 loss (y)
/:oded tensor y Coded tensor z
NN NN
---------------------------------------------------------------------

Packets
Coded tensor y Coded tensor z
—>
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During inferencing: packet loss should have the same effect as during training
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Packet loss during training and inferencing

During training: apply P} Random zeroing
23

e z = Pyss(y) \l

7]8
Coded tensor y Coded fensor z
NN NN
Encoder| =~~~ """ """ - T T T oo s ——------- Same effect | ------ Decoder

Packets
Coded tensor y Coded tensor z
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During inferencing: packet loss should have the same effect as during training
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How to choose packet loss rate during training

pkt loss rates in

Choice training Testing quality
Design 1 I Poor quality under
O loss in training high loss rates
0% 90%
Design 2 Poor quality under 0%
uniform (0-100%) EEEEEEEN loss
0% 90%
Design 3 Better quality under

low loss rates

IIIII Decent quality under

0% 90% high loss rates

more 0% loss
more 0-60%

Quality (SSIM)

—Design 1 (no loss)
—Design 2 (0-1 uniform)
—Design 3 (more 0loss and 0-0.6 loss)

20 40 60 80
Testing packet loss rate (%)
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Other issues addressed in the paper

* Real time (30fps) encoding/decoding
on both GPU and mobile devices

* Fast bitrate adaptation

e Catch-up logic to minimize error-
propagation

GRACE: Loss-Resilient Real-Time Video through Neural Codecs

Yihua Cheng!, Ziyi Zhang!, Hanchen Li!, Anton Arapin!, Yue Zhang', Qizheng Zhang?, Yuhan Liu!,
Kuntai Du!, Xu Zhangl, Francis Y. Yan?, Amrita Mazumdar?, Nick Feamster!, Junchen Jiang1
The University of Chicago, 2Stanford University, 3Microsoft, *NVIDIA

Abstract

In real-time video communication, retransmitting lost packets
over high-latency networks is not viable due to strict latency
requirements. To counter packet losses without retransmis-
sion, two primary strategies are employed—encoder-based
forward error correction (FEC) and decoder-based error con-
cealment. The former encodes data with redundancy before
transmission, yet determining the optimal redundancy level
in advance proves challenging. The latter reconstructs video
from partially received frames, but dividing a frame into inde-
pendently coded partitions inherently compromises compres-
sion efficiency, and the lost information cannot be effectively
recovered by the decoder without adapting the encoder.

‘We present a loss-resilient real-time video system called
GRACE, which preserves the user’s quality of experience
(QoE) across a wide range of packet losses through a new
neural video codec. Central to GRACE’s enhanced loss re-
silience is its joint training of the neural encoder and decoder
under a spectrum of simulated packet losses. In lossless sce-
narios, GRACE achieves video quality on par with conven-
tional codecs (e.g., H.265). As the loss rate escalates, GRACE
exhibits a more graceful, less pronounced decline in qual-
ity, consistently outperforming other loss-resilient schemes.
Through extensive evaluation on various videos and real net-
work traces, we demonstrate that GRACE reduces undecod-
able frames by 95% and stall duration by 90% compared with
FEC, while markedly boosting video quality over error con-
cealment methods. In a user study with 240 crowdsourced
participants and 960 subjective ratings, GRACE registers a
38% higher mean opinion score (MOS) than other baselines.
‘We make the source codes and models of GRACE public at
https://uchi-jcl.github.io/grace.html.

Error Concealment

Forward Error
Correction (FEC) |

Packet loss rate

Figure 1: Illustration of the video quality achieved by different
loss-resilient schemes, operating under the same bandwidth
budget, across varying packet loss rates. Actual experimental
results are shown in Figure 8.

Loss-resilient techniques generally fall into two categories.
First is encoder-side forward error correction (FEC), such as
Reed-Solomon codes [100], fountain codes [76,77], and more
recently, streaming codes [28, 86]. FEC incorporates redun-
dancy into data prior to transmission. With a redundancy rate
of R%—the percentage of redundant data relative to the total
data size—up to R% of lost data can be recovered. Beyond
that, the video becomes undecodable, rendering a sharp col-
lapse in video quality (Figure 1). Increasing R protects against
higher losses but also entails a higher bandwidth overhead,
which in turn reduces video quality. Thus, determining the
optimal R in advance poses a practical challenge.

The second category is decoder-side error concealment,
which reconstructs portions of a video frame affected by
packet losses, through handcrafted heuristics [63,97, 115] or
neural networks [59,67,79,87,102]. Nevertheless, implement-
ing error concealment requires partitioning a video frame into
independently decodable units (e.g., slices [99] or tiles [64])
first, thus reducing compression efficiency. Moreover, since
the encoder is not optimized for loss resilience, the lost infor-

matinn nannnt ha affantivaly ranavarad hy tha danadar alana
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Evaluating GRACE's performance

D ataset: Dataset v?d:f)s Length (s) Size Description
Trai ning: Vimeo-90K Kinetics 45 450 720p Human actions and
Testing: 61 videos from other datasets = 360p interaction with objects
Gaming 5 100 720p PC game recordings

HD videos (human,

Quallty metrlc. UvG 4 80 1080p nature, sports, etc.)
SSIM in dB averaged across all frames
FVC 7 140 1080p In/outdoor video calls

(calculated by —10log(1 — SSIM))
Total 61 770

Baseline 1: WebRTC (H.265) w/ FEC
Use latest FEC technique (Tambur, NSDI 23)

https://www.usenix.org/conference/nsdi23/presentation/rudow

Baseline 2: Error concealment

Use flow-guided NN-based technique (ECCV 2022) https://arxiv.org/abs/2208.06768

Baseline 3: SVC w/ FEC at base layer
23



Quality under different packet loss rates

17 M
w
=15 PRI
©
Target bitrate s 13
3Mbps %
H265 w/
20% FEC 50% FEC
9 | SVC (w/ FEC)

0 01 02 03 04 05 06 07 o038
Packet loss rate (per frame)

Better quality under various packet loss rates than other loss-resilient schemes.




Visualization of loss-recovered images

Error concealment GRACE
SSIM: 10.9dB SSIM: 12.0dB

Sample images decoded by GRACE and error concealment under 50%
packet loss applied on three consecutive frames

Original frame

Visually, Grace-recovered images look more decent




Compression efficiency under O packet loss

-o-H.264 -e=-H.265 -e=Grace (ours)

o0
\

——
- |
45 (720p) videos %? 16
40 "Kinetics" videos for 450s, ‘E’ Y
5 "Gaming" videos for 100 secs %
12 Overall, better than H.264 (veryfast mode)
but slightly worse than H.265 (veryfast mode)
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Bitrate (Mbps)

GRACE doesn’t sacrifice compression efficiency for loss resilience




Quality & smoothness tradeoft in real networks

End-to-end 400 sec video streaming
Bandwidth varies between 0.2-10Mbps
150ms RTT, 64KB queue

Use GCC as congestion control

Test videos from Kinetics dataset

GRACE keeps smoother playback with minor quality drop in real network scenarios
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Quality & smoothness tradeoft in real networks

Salsify
GRACE (ours) » O @ webrrc (H.265)
16 F + WebRTC w/o FEC
End-to-end 400 sec video streaming —~ A (H.265) w/ FEC

What does this trade-off mean in real world?

“High quality but minor glitches” vs. “smooth playback but minor quality drop”
Test videos from Kinetics dataset & = h
1o Error Better

concealment
] ] ]

0 4 8
Video stall ratio (%)

GRACE keeps smoother playback with minor quality drop in real network scenarios




What does this tradeoff visually look like?

WebRTC w/ FEC GRACE
(smoother playback yet minor quality drop)

. T
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What does this tradeoft visually look like?

WebRTC w/ FEC GRACE
(high quality but minor g“ B GRACE m WebRTCw/oFEC il WebRTCw/FEC mSalsify
e sy T T o5
(@)
g4
960 user ratings 53
on 8 sampled videos = 5
from 240 Amazon MTurk workers 2 ‘ I i ‘

o 1

= 1 2 3 4 5 6 7 8

Video ID

Most users favor GRACE (smoother playback) over smooth quality with glitch



Conclusion

{ Objective }

=3

Lo

High quality, low latency playback under
unpredictable network conditions

Improve loss resiliency by jointly training neural
video encoder and decoder under different losses

When packet loss happens, GRACE still streams
video without freezing or significant quality drop



GRACE: The Al-Driven
Future of Smooth Video
Communication

A pioneering real-time video system that jointly optimizes
a neural video codec's encoder and decoder to
withstand diverse packet loss scenarios.

QUALITY OF INCOMPLETE FRAMES .

O GRACE
WEBRTC W/ *
FORWARD

ERROR CORRECTION

WEBRTC W/
NEURAL NETWORK BASED
ERROR CONCEALMENT

N

VIDEO SMOOTHNESS

O u]

Visit us at:

T "5 https://uchi-jcl.github.io/grace.html
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