
GRACE: Loss-Resilient Real-Time
Video through Neural Codecs

Yihua Cheng, Ziyi Zhang, Hanchen Li, Anton Arapin, Yue Zhang,
Qizheng Zhang, Yuhan Liu, Kuntai Du, Xu Zhang,

Francis Y. Yan, Amrita Mazumdar, Nick Feamster, Junchen Jiang

1

Real-time video streaming is prevalent

2

Video conferencing

Cloud gaming

Live streaming

Interactive VR/AR

Real-time video streaming is prevalent

3

Video conferencing

Cloud gaming

Live streaming

Interactive VR/AR
"…over the past year, there has been a
100-fold increase of video minutes
received via the WebRTC stack…"

Goal: stream video w/ constantly low delay and high bitrate

4

Common intuition: lowering packet loss à better user-perceived quality
but does lowering packet loss always work?

[1] Hairpin: Rethinking Packet Loss Recovery in Edge-based Interactive Video Streaming (NSDI’24)

(No time to wait for retransmission)

Challenge: packet losses are hard to avoid

~1.5% frames lose* 20%-80% of their packets burstly within a frame.[1,2]

*Frame-level packet loss includes both packets dropped in network and packets not received by the decoding deadline

[2] Tambur: Efficient loss recovery for videoconferencing via streaming codes (NSDI’23)

Is one video obviously better than another video?
Video A:

50% packet loss
Video B:

15% packet loss

5

A is much better B is much better No significant difference

Survey: which video is better?

A: 50% loss between 2-2.15 sec B: 15% loss between 2-2.15 sec

6

A is obviously better B is obviously betterNo significant difference

Better network performance doesn't always improve user perceived quality

Video content packets

How receiver deals with packet losses

Sender Receiver

I will use most efficient compression
without any redundancy I will guess the content in the lost packets

Issue: Guessing missing data is fundamentally difficult without redundant information

7

Error concealment: “guesses” the missing piece based on arrived data at receiver side

How sender deals with packet losses

Sender Receiver

4 Video content packets 1 Parity packet

I’ll sacrifice bitrate and send extra parity
packets to protect against packet losses Too many packets lost, I cannot decode

Issue: FEC is effective only if packet loss is lower than its redundancy rate
8

Forward error correction (FEC): protect at sender-side

à Tolerate at most 1 packets lost

(Frame-level) packet loss rate

Fr
am

e
qu

al
ity

0 90%30%

High

Low

60%

FEC 30% redundancy

Error concealment

Summary of existing solutions

Better
How to improve loss-

resilience (i.e., green line)?

9

10

The video sender and receiver are often jointly optimized
for compression efficiency.

However, the video sender and receiver are rarely
jointly optimized for loss resilience.

What's missing?

Our insight: jointly optimizing the encoder and decoder under different
packet losses considerably improves loss resilience

Specifically, GRACE achieved better loss resilience by jointly training neural encoder
and decoder under a range of simulated packet losses

11

Our insight: jointly optimizing the encoder and decoder under different
packet losses considerably improves loss resilience

Specifically, GRACE achieved better loss resilience by jointly training neural encoder
and decoder under a range of simulated packet losses

12

Q1: How to train
neural video codec?

Q2: How to simulate
packet loss in training?

Q3: How to choose the
packet loss rates in training

Video codecs and neural video codecs

13

The encoder takes in video and producing the code

Decoder reconstructs the video based on the code

Code

Motion prediction
Residual calculation

DCT transform
Quantization

For simplicity, the entropy encoding step is omitted, since it does not change the code

Reconstruct
Inverse transform

Dequantization

!𝑥: Decoded
video

𝑥: Video
source

Video codecs and neural video codecs

14

!𝑥: Decoded
video

𝑥: Video
source

Replacing modules in traditional codecs with neural networks

Encoder and decoder can be seen as trainable functions 𝑓𝜙 and 𝑔𝜃

Neural encoder
𝑓𝜙 𝑥 → 𝑦

Neural decoder
𝑔𝜃(𝑦) → (𝑥

𝑦: the coded
tensor

Specifically, GRACE employs the NN architecture from DVC (CVPR’19)

How to train a neural video codec

15

Training objective
Minimize 𝐸𝑟𝑟𝑜𝑟 𝑥, &𝑥 + 	𝛼 * 𝑆𝑖𝑧𝑒 𝑦 where 𝑦 = 𝑓𝜙(𝑥)

&𝑥 = 𝑔𝜃(𝑦)
Pixel-level deviation (MSE) Encoded data size

!𝑥: Decoded
video

𝑥: Video
source Neural encoder

𝑓𝜙 𝑥 → 𝑦
Neural decoder
𝑔𝜃(𝑦) → (𝑥

𝑦: the coded
tensor

where 𝑦 = 𝑓𝜙(𝑥)
&𝑥 = 𝑔𝜃(𝑦)

Training objective

How to train a neural video codec with packet loss

16

Minimize 𝐸𝑟𝑟𝑜𝑟 𝑥, &𝑥 + 	𝛼 * 𝑆𝑖𝑧𝑒 𝑦 whereMinimize 𝐸𝑟𝑟𝑜𝑟 𝑥, &𝑥 + 	𝛼 * 𝑆𝑖𝑧𝑒 𝑦

Pixel-level deviation (MSE) Encoded data size

!𝑥: Decoded
video

𝑥: Video
source Neural encoder

𝑓𝜙 𝑥 → 𝑦
Neural decoder
𝑔𝜃(𝑦) → (𝑥

!: the coded
tensor

Neural decoder
(𝑥 	= 𝒈𝜽(𝒛)

where 𝑦 = 𝑓𝜙(𝑥)
&𝑥 = 𝑔𝜃(𝑦)

Training objective

How to train a neural video codec with packet loss

17

Minimize 𝐸𝑟𝑟𝑜𝑟 𝑥, &𝑥 + 	𝛼 * 𝑆𝑖𝑧𝑒 𝑦 whereMinimize 𝐸𝑟𝑟𝑜𝑟 𝑥, &𝑥 + 	𝛼 * 𝑆𝑖𝑧𝑒 𝑦
𝑦 = 𝑓𝜙(𝑥)
𝒛 = 𝑷𝒍𝒐𝒔𝒔(𝒚)
&𝑥 = 𝒈𝜽(𝒛)

Pixel-level deviation (MSE) Encoded data size

!𝑥: Decoded
video

𝑥: Video
source Neural encoder

𝑓𝜙 𝑥 → 𝑦
Neural decoder
𝑔𝜃(𝑦) → (𝑥

!: the coded
tensor

!: the coded
tensor

!: coded tensor
after loss

Packet loss function
𝒛 = 𝑷𝒍𝒐𝒔𝒔(𝒚)

Neural decoder
(𝑥 	= 𝒈𝜽(𝒛)𝒈𝜽(𝒛) → (𝑥

Packet loss during training and inferencing

18

Coded tensor 𝑦

321
654
987

321
654
987

321
654
987

NN
Encoder

NN
Decoder

301
604
980

301
604
980

301
604
980

Coded tensor 𝑧

𝒛 = 𝑷𝒍𝒐𝒔𝒔(𝒚)

During training: apply 𝑃'()) Random zeroing

During inferencing: packet loss should have the same effect as during training

Coded tensor 𝑦
321
654
987

321
654
987

321
654
987

Packet loss during training and inferencing

Coded tensor 𝑦

Random
partitioning

19

843 843 843

961

752 752 752

961 961

Entropy
encoding

Packets

Network Entropy
decoding

843 843 843

961

752 752 752

961 961

321
654
987

321
654
987

321
654
987

Merging

Coded tensor 𝑧
321
654
987

321
654
987

321
654
987

Coded tensor 𝑦

321
654
987

321
654
987

321
654
987

NN
Encoder

NN
Decoder

301
604
980

301
604
980

301
604
980

Coded tensor 𝑧

𝒛 = 𝑷𝒍𝒐𝒔𝒔(𝒚)

During training: apply 𝑃'()) Random zeroing

During inferencing: packet loss should have the same effect as during training

Packet loss during training and inferencing

Coded tensor 𝑦

Random
partitioning

20

843 843 843

961

752 752 752

961 961

Entropy
encoding

Packets

Network Entropy
decoding

843 843 843

961

752 752 752

961 961

321
654
987

321
654
987

321
654
987

Merging

Coded tensor 𝑧
321
654
987

321
654
987

321
654
987

843 843 843

961 961 961

000 000 000
301
604
980

301
604
980

301
604
980

Coded tensor 𝑦

321
654
987

321
654
987

321
654
987

NN
Encoder

NN
Decoder

301
604
980

301
604
980

301
604
980

Coded tensor 𝑧

𝒛 = 𝑷𝒍𝒐𝒔𝒔(𝒚)

During training: apply 𝑃'()) Random zeroing

During inferencing: packet loss should have the same effect as during training

Same effect

How to choose packet loss rate during training

21

0 20 40 60 80

Q
ua

lit
y

(S
SI

M
)

Testing packet loss rate (%)

Design 1 (no loss)
Design 2 (0-1 uniform)
Design 3 (more 0 loss and 0-0.6 loss)

Choice pkt loss rates in
training Testing quality

Design 1
0 loss in training

Poor quality under
high loss rates

Design 2
uniform (0-100%)

Poor quality under 0%
loss

Design 3
more 0% loss
more 0-60%

Better quality under
low loss rates

Decent quality under
high loss rates

0% 90%

0% 90%

0% 90%

Other issues addressed in the paper

• Real time (30fps) encoding/decoding
on both GPU and mobile devices

• Fast bitrate adaptation

• Catch-up logic to minimize error-
propagation

22

Evaluating GRACE’s performance

Dataset:
Training: Vimeo-90K
Testing: 61 videos from other datasets à

Quality metric:
SSIM in dB averaged across all frames
(calculated by	−10log(1 − 𝑆𝑆𝐼𝑀))

Baseline 1: WebRTC (H.265) w/ FEC
Use latest FEC technique (Tambur, NSDI 23)

Baseline 2: Error concealment
Use flow-guided NN-based technique (ECCV 2022)

Baseline 3: SVC w/ FEC at base layer
23

https://arxiv.org/abs/2208.06768

https://www.usenix.org/conference/nsdi23/presentation/rudow

9

11

13

15

17

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

SS
IM

 (d
B)

Packet loss rate (per frame)

Quality under different packet loss rates

24

H265 w/
20% FEC

H265 w/
50% FEC

Neural Error Concealment
SVC (w/ FEC)

Target bitrate
3Mbps

Better quality under various packet loss rates than other loss-resilient schemes.

GRACE (ours) More graceful quality degradation

Visualization of loss-recovered images

25

Sample images decoded by GRACE and error concealment under 50%
packet loss applied on three consecutive frames

Visually, Grace-recovered images look more decent

Compression efficiency under 0 packet loss

26

10

12

14

16

18

0 1 2 3 4 5 6

SS
IM

 (d
B)

Bitrate (Mbps)

H.264 H.265 Grace (ours)

GRACE doesn’t sacrifice compression efficiency for loss resilience

Overall, better than H.264 (veryfast mode)
 but slightly worse than H.265 (veryfast mode)

45 (720p) videos
40 "Kinetics" videos for 450s,

5 "Gaming" videos for 100 secs

Quality & smoothness tradeoff in real networks

27

12

14

16

0 4 8

Better

SS
IM

(d
B)

Video stall ratio (%)

End-to-end 400 sec video streaming
Bandwidth varies between 0.2-10Mbps

150ms RTT, 64KB queue
Use GCC as congestion control

Test videos from Kinetics dataset

GRACE keeps smoother playback with minor quality drop in real network scenarios

GRACE (ours)

Error
concealment

SVC w/ FEC

WebRTC
(H.265) w/ FEC

WebRTC (H.265)
w/o FEC

Salsify

Quality & smoothness tradeoff in real networks

28

12

14

16

0 4 8

Better

SS
IM

(d
B)

Video stall ratio (%)

End-to-end 400 sec video streaming
Bandwidth varies between 0.2-10Mbps

150ms RTT, 64KB queue
Use GCC as congestion control

Test videos from Kinetics dataset

GRACE keeps smoother playback with minor quality drop in real network scenarios

GRACE (ours)

Error
concealment

SVC w/ FEC

WebRTC
(H.265) w/ FEC

WebRTC (H.265)
w/o FEC

What does this trade-off mean in real world?
“High quality but minor glitches” vs. “smooth playback but minor quality drop”

Salsify

What does this tradeoff visually look like?

29

GRACE
(smoother playback yet minor quality drop)

WebRTC w/ FEC
(high quality but minor glitch)

What does this tradeoff visually look like?

30

GRACE
(smoother playback yet minor quality drop)

WebRTC w/ FEC
(high quality but minor glitch)

960 user ratings
on 8 sampled videos

 from 240 Amazon MTurk workers

Most users favor GRACE (smoother playback) over smooth quality with glitch

1

2

3

4

5

1 2 3 4 5 6 7 8M
ea

n
O

pi
ni

on
 S

co
re

Video ID

GRACE WebRTC w/o FEC WebRTC w/ FEC Salsify

Conclusion

31

High quality, low latency playback under
unpredictable network conditions Objective

Improve loss resiliency by jointly training neural
video encoder and decoder under different losses Insight

When packet loss happens, GRACE still streams
video without freezing or significant quality dropGRACE

Visit us at:
https://uchi-jcl.github.io/grace.html

32

