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Real-time video streaming is prevalent
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Real-time video streaming is prevalent
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"…over the past year, there has been a 
100-fold increase of video minutes 
received via the WebRTC stack…"



Goal: stream video w/ constantly low delay and high bitrate
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Common intuition: lowering packet loss à better user-perceived quality
but does lowering packet loss always work?

[1] Hairpin: Rethinking Packet Loss Recovery in Edge-based Interactive Video Streaming (NSDI’24)

(No time to wait for retransmission)

Challenge: packet losses are hard to avoid

~1.5% frames lose* 20%-80% of their packets burstly within a frame.[1,2]

*Frame-level packet loss includes both packets dropped in network and packets not received by the decoding deadline

[2] Tambur: Efficient loss recovery for videoconferencing via streaming codes (NSDI’23)



Is one video obviously better than another video?
Video A: 

50% packet loss
Video B: 

15% packet loss
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A is much better B is much better No significant difference 



Survey: which video is better?

A: 50% loss between 2-2.15 sec B: 15% loss between 2-2.15 sec
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A is obviously better B is obviously betterNo significant difference

Better network performance doesn't always improve user perceived quality



Video content packets

How receiver deals with packet losses

Sender Receiver

I will use most efficient compression 
without any redundancy I will guess the content in the lost packets

Issue: Guessing missing data is fundamentally difficult without redundant information
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Error concealment: “guesses” the missing piece based on arrived data at receiver side



How sender deals with packet losses

Sender Receiver

4 Video content packets 1 Parity packet

I’ll sacrifice bitrate and send extra parity 
packets to protect against packet losses Too many packets lost, I cannot decode

Issue: FEC is effective only if packet loss is lower than its redundancy rate
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Forward error correction (FEC): protect at sender-side

à Tolerate at most 1 packets lost
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The video sender and receiver are often jointly optimized 
for compression efficiency.

However, the video sender and receiver are rarely 
jointly optimized for loss resilience.

What's missing?



Our insight: jointly optimizing the encoder and decoder under different 
packet losses considerably improves loss resilience 

Specifically, GRACE achieved better loss resilience by jointly training neural encoder 
and decoder under a range of simulated packet losses
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Our insight: jointly optimizing the encoder and decoder under different 
packet losses considerably improves loss resilience 

Specifically, GRACE achieved better loss resilience by jointly training neural encoder 
and decoder under a range of simulated packet losses
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Q1: How to train 
neural video codec?

Q2: How to simulate 
packet loss in training?

Q3: How to choose the 
packet loss rates in training



Video codecs and neural video codecs
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The encoder takes in video and producing the code

Decoder reconstructs the video based on the code

Code

Motion prediction
Residual calculation 

DCT transform
Quantization

For simplicity, the entropy encoding step is omitted, since it does not change the code

Reconstruct
Inverse transform

Dequantization

!𝑥: Decoded 
video

𝑥: Video 
source



Video codecs and neural video codecs
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!𝑥: Decoded 
video

𝑥: Video 
source

Replacing modules in traditional codecs with neural networks

Encoder and decoder can be seen as trainable functions 𝑓𝜙 and 𝑔𝜃

Neural encoder
𝑓𝜙 𝑥 → 𝑦

Neural decoder
𝑔𝜃(𝑦) → (𝑥

𝑦: the coded 
tensor

Specifically, GRACE employs the NN architecture from DVC (CVPR’19)



How to train a neural video codec
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Training objective
Minimize 𝐸𝑟𝑟𝑜𝑟 𝑥, &𝑥 + 	𝛼 * 𝑆𝑖𝑧𝑒 𝑦 where 𝑦 = 𝑓𝜙(𝑥)

&𝑥 = 𝑔𝜃(𝑦)
Pixel-level deviation (MSE) Encoded data size

!𝑥: Decoded 
video

𝑥: Video 
source Neural encoder

𝑓𝜙 𝑥 → 𝑦
Neural decoder
𝑔𝜃(𝑦) → (𝑥

𝑦: the coded 
tensor



where 𝑦 = 𝑓𝜙(𝑥)
&𝑥 = 𝑔𝜃(𝑦)

Training objective

How to train a neural video codec with packet loss
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Minimize 𝐸𝑟𝑟𝑜𝑟 𝑥, &𝑥 + 	𝛼 * 𝑆𝑖𝑧𝑒 𝑦 whereMinimize 𝐸𝑟𝑟𝑜𝑟 𝑥, &𝑥 + 	𝛼 * 𝑆𝑖𝑧𝑒 𝑦

Pixel-level deviation (MSE) Encoded data size

!𝑥: Decoded 
video

𝑥: Video 
source Neural encoder

𝑓𝜙 𝑥 → 𝑦
Neural decoder
𝑔𝜃(𝑦) → (𝑥

!: the coded 
tensor

Neural decoder
(𝑥 	= 𝒈𝜽(𝒛)



where 𝑦 = 𝑓𝜙(𝑥)
&𝑥 = 𝑔𝜃(𝑦)

Training objective

How to train a neural video codec with packet loss
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Minimize 𝐸𝑟𝑟𝑜𝑟 𝑥, &𝑥 + 	𝛼 * 𝑆𝑖𝑧𝑒 𝑦 whereMinimize 𝐸𝑟𝑟𝑜𝑟 𝑥, &𝑥 + 	𝛼 * 𝑆𝑖𝑧𝑒 𝑦
𝑦 = 𝑓𝜙(𝑥)
𝒛 = 𝑷𝒍𝒐𝒔𝒔(𝒚)
&𝑥 = 𝒈𝜽(𝒛)

Pixel-level deviation (MSE) Encoded data size

!𝑥: Decoded 
video

𝑥: Video 
source Neural encoder

𝑓𝜙 𝑥 → 𝑦
Neural decoder
𝑔𝜃(𝑦) → (𝑥

!: the coded 
tensor

!: the coded 
tensor

!: coded tensor 
after loss

Packet loss function
𝒛 = 𝑷𝒍𝒐𝒔𝒔(𝒚)

Neural decoder
(𝑥 	= 𝒈𝜽(𝒛)𝒈𝜽(𝒛) → (𝑥



Packet loss during training and inferencing
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During training: apply 𝑃'()) Random zeroing

During inferencing: packet loss should have the same effect as during training
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Packet loss during training and inferencing

Coded tensor 𝑦

Random 
partitioning
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Packet loss during training and inferencing

Coded tensor 𝑦

Random 
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How to choose packet loss rate during training
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0 loss in training
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high loss rates
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Poor quality under 0% 
loss
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Better quality under  
low loss rates

Decent quality under 
high loss rates
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Other issues addressed in the paper

• Real time (30fps) encoding/decoding 
on both GPU and mobile devices

• Fast bitrate adaptation

• Catch-up logic to minimize error-
propagation
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Evaluating GRACE’s performance

Dataset: 
Training: Vimeo-90K
Testing: 61 videos from other datasets à

Quality metric: 
SSIM in dB averaged across all frames
(calculated by	−10log(1 − 𝑆𝑆𝐼𝑀)) 

Baseline 1: WebRTC (H.265) w/ FEC
Use latest FEC technique (Tambur, NSDI 23)

Baseline 2: Error concealment
Use flow-guided NN-based technique (ECCV 2022)

Baseline 3: SVC w/ FEC at base layer
23

https://arxiv.org/abs/2208.06768

https://www.usenix.org/conference/nsdi23/presentation/rudow
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H265 w/ 
20% FEC

H265 w/ 
50% FEC

Neural Error Concealment
SVC (w/ FEC)

Target bitrate 
3Mbps

Better quality under various packet loss rates than other loss-resilient schemes.

GRACE (ours) More graceful quality degradation



Visualization of loss-recovered images
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Sample images decoded by GRACE and error concealment under 50% 
packet loss applied on three consecutive frames

Visually, Grace-recovered images look more decent



Compression efficiency under 0 packet loss
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GRACE doesn’t sacrifice compression efficiency for loss resilience

Overall, better than H.264 (veryfast mode)
 but slightly worse than H.265 (veryfast mode)

45 (720p) videos
40 "Kinetics" videos for 450s, 

5 "Gaming" videos for 100 secs



Quality & smoothness tradeoff in real networks
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End-to-end 400 sec video streaming
Bandwidth varies between 0.2-10Mbps

150ms RTT, 64KB queue
Use GCC as congestion control

Test videos from Kinetics dataset

GRACE keeps smoother playback with minor quality drop in real network scenarios

GRACE (ours) 
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Quality & smoothness tradeoff in real networks
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End-to-end 400 sec video streaming
Bandwidth varies between 0.2-10Mbps

150ms RTT, 64KB queue
Use GCC as congestion control

Test videos from Kinetics dataset

GRACE keeps smoother playback with minor quality drop in real network scenarios

GRACE (ours) 

Error 
concealment

SVC w/ FEC

WebRTC 
(H.265) w/ FEC

WebRTC (H.265) 
w/o FEC

What does this trade-off mean in real world?
“High quality but minor glitches” vs. “smooth playback but minor quality drop”

Salsify



What does this tradeoff visually look like?
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GRACE
(smoother playback yet minor quality drop)

WebRTC w/ FEC
(high quality but minor glitch)



What does this tradeoff visually look like?
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GRACE
(smoother playback yet minor quality drop)

WebRTC w/ FEC
(high quality but minor glitch)

960 user ratings 
on 8 sampled videos

 from 240 Amazon MTurk workers

Most users favor GRACE (smoother playback) over smooth quality with glitch
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Conclusion
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High quality, low latency playback under 
unpredictable network conditions Objective

Improve loss resiliency by jointly training neural 
video encoder and decoder under different losses Insight

When packet loss happens, GRACE still streams 
video without freezing or significant quality dropGRACE



Visit us at: 
https://uchi-jcl.github.io/grace.html
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